Need up to 30 seconds to load.
- [Instructor] The dot plot shows the
number of hours of daily driving time
for 14 school bus drivers.
Each dot represents a driver.
So for example, one driver drives one hour a day.
Two drivers drive two hours a day.
One driver drives three hours a day.
It looks like there's five drivers
that drive seven hours a day.
Which of the following is the closest
estimate to the percentile rank
for the driver with a daily driving time of six hours?
And then they give us some choices.
Which of the following is the closest estimate
to the percentile rank for the driver
with the daily driving time of six hours?
So pause the video and see if you can figure out
which of these percentiles is the closest estimate
to the percentile rank of a driver
with a daily driving time of six hours,
looking at this data right over here.
Alright, now let's work through this together.
So when you think about percentile
you really want to think about,
so let me write this down.
When we're talking about percentile
we're really saying the percentage
of the data
that,
and there's actually two ways that you could compute it.
One is the percentage of the data
that is below
the amount in question,
amount in question.
The other possibility is the percent
of the data
that is at or below,
that is at or below the amount,
the amount in question.
So if we look at this right over here,
let's just figure out how many data points,
what percentage of the data points
are below six hours per day.
So let's see, there are, I'm just gonna count 'em.
One, two, three, four, five, six, seven.
So seven of the 14 are below six hours.
So we could just say seven,
if we use this first technique
we would have seven of the 14 are below
six hours per day, and so that would
get us a number of 50%, that six hours
is at the 50th percentile.
If we want to say what percentage
is at that number or below then
we would also count this one, so we would say eight,
or eight out of 14.
Eight out of 14, which is the same thing
as four out of seven, and if we wanted
to write that as a decimal, let's see,
seven goes into four point zero zero zero,
we just need to estimate.
So seven goes into 40 five times.
35, we subtract, we get a five,
bring down a zero, it goes five times.
Look, it's just gonna be 0.5 repeating.
So 55.5555%.
So either of these would actually be
a legitimate response to the percentile rank
for the driver with the daily driving time of six hours.
It depends on whether you include the six hours or not.
So you could say either the 50th percentile
or roughly the 55th, or actually
the 56th percentile if you wanted
to round to the nearest percentile.
Now if you look at these choices here,
lucky for us there's only one choice
that's even, that's reasonably close
to either one of those, and that's the 55th percentile,
and it looks like the people who wrote this question
went with the calculation of percentile
where they include the data point in question.
So everything at six hours or less,
what percentage of the total data is that?